Distributed Coloring Depending on the Chromatic Number or the Neighborhood Growth

نویسندگان

  • Johannes Schneider
  • Roger Wattenhofer
چکیده

We deterministically compute a ∆+1 coloring in time O(∆5c+2 ·(∆5)/(∆1) + (∆1) + log∗ n) and O(∆5c+2 · (∆5)/∆ + ∆ + (∆5) log∆5 log n) for arbitrary constants d, and arbitrary constant integer c, where ∆i is defined as the maximal number of nodes within distance i for a node and ∆ := ∆1. Our greedy algorithm improves the state-of-the-art ∆+1 coloring algorithms for a large class of graphs, e.g. graphs of moderate neighborhood growth. We also state and analyze a randomized coloring algorithm in terms of the chromatic number, the run time and the used colors. If ∆ ∈ Ω(log log ∗ n n) and χ ∈ O(∆/ log log ∗ n n) then our algorithm executes in time O(logχ + log∗ n) with high probability. For graphs of polylogarithmic chromatic number the analysis reveals an exponential gap compared to the fastest ∆ + 1 coloring algorithm running in time O(log∆ + √ log n). The algorithm works without knowledge of χ and uses less than ∆ colors, i.e., (1 − 1/O(χ))∆ with high probability. To the best of our knowledge this is the first distributed algorithm for (such) general graphs taking the chromatic number χ into account.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry breaking depending on the chromatic number or the neighborhood growth

Wedeterministically compute a∆+1 coloring and amaximal independent set(MIS) in time O(∆1/2+Θ(1/ √ h) + log n) for∆1+i ≤ ∆1+i/h, where∆j is defined as themaximal number of nodes within distance j for a node and ∆ := ∆1. Our greedy coloring and MIS algorithms improve the state-of-the-art algorithms running inO(∆+ log n) for a large class of graphs, i.e., graphs of (moderate) neighborhood growth w...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011